

Collections Classes for
Real-Time and

High-Performance
Applications

July 4, 2005
Jean-Marie Dautelle

Introduction

 The real-time specification for Java (RTSJ) aims to make
your code more time predictable. But, this predictability can
easily be ruined by using standard library classes. In this
presentation we will look at potential problems with the
standard Java collection framework and how these problems
can be solved by using alternative implementations such as
the one provided by the open-source Javolution library
(http://javolution.org)

http://javolution.org/

Standard Collections Overview

• Interface based.
• java.util.List
• java.util.Map
• java.util.Set
• ...

• Interface approach allow for “drop-in” replacement.
• Generic since Java™ 5.0
• Oriented toward throughput
• Time predictability and RTSJ (Real Time

Specification for Java) not taken into consideration
by the implementation.

Standard Collections Timing Issues

◗ Users may encounter unexpected large delays due to:

• Large arrays being allocated and copied (e.g. ArrayList
capacity increase).

• Sudden burst of computation (e.g. HashMap rehashing all its
map entries).

• Long garbage collection pauses (full GC) due to memory
fragmentation when large arrays are allocated (e.g. ArrayList)

Standard Collections Memory Issues
◗ Memory allocation might be performed surreptitiously

after the collection creation and cause RTSJ memory
clashes:

• HashMap.put(key,value) may create new entries allocated from
the current memory area, resulting in memory clash when
executing in ScopedMemory and the map is in
ImmortalMemory/HeapMemory

• Iterator objects may be internally allocated, e.g.
Collection.addAll(Collection), Map.putAll(Map) causing
memory leak when executing in ImmortalMemory

• Objects may be allocated at first use only (lazy initialization), e.g.
Map.keySet(), Map.values() causing further unexpected illegal
access errors.

Javolution Collections Overview
◗ Provides very few classes but they are substitute for most

of java.util.* collection implementations. For example:

• IdentityHashMap would be a FastMap with an identity key
comparator.

• Both HashMap and LinkedHashMap can be replaced by a
FastMap (same for HashSet/LinkedHashSet and FastSet)

◗ Implements standard collection interfaces.
◗ Generic when built with the ant target 1.5, but can also be

built for any Java VM/Compiler or even J2ME.

http://javolution.org/api/javolution/util/FastMap.html
http://javolution.org/api/javolution/util/FastComparator.html
http://javolution.org/api/javolution/util/FastMap.html
http://javolution.org/api/javolution/util/FastSet.html

Time-Predictability
◗ Collection capacity increases smoothly.

• Small increments (avoid large arrays allocations).
• Pre-allocation can be performed using profiling information from

previous executions (Ref. AllocationProfile)
◗ No internal array resize or copy.

• FastTable (random access list) uses multi-dimensional arrays
to avoid resizing and copying its internal arrays.

• Allocated arrays are small to avoid memory fragmentation.
◗ No rehashing.

• Map entries have their own entry table. When the size increases
beyond capacity, new (larger) tables are allocated for the new
entries (the old entries are not moved and do not need rehashing).

http://javolution.org/api/javolution/realtime/AllocationProfile.html
http://javolution.org/api/javolution/util/FastTable.html

Memory Allocation Policy
◗ No memory allocation ever performed unless the

collection size exceeds its capacity which may be
specified at creation.

• Collections maintain internal pools of entries (map) or nodes
(list). When an entry/node is removed from the collection, it is
automatically restored to the pool.

• The initial capacity determinates the number of entries/nodes
allocated at creation.

• Lazy initialization is forbidden.

• Iterations can be performed without allocating iterator objects
(direct record iterations)

RTSJ - Compliance
◗ No memory clash (e.g. IllegalAssignmentError)

regardless of the current memory area or the operation
being performed.

◗ Collections can be allocated in ImmortalMemory (e.g.
global static collections) and accessed by all threads
including NoHeapRealtimeThread

◗ Integrated with Javolution real-time framework which
allows for transparent object recycling. Throw-away
collections can be pre-allocated in ImmortalMemory
(usable by all threads) and automatically recycled
(necessary as ImmortalMemory is never garbage
collected).

Concurrency and Synchronization
◗ Collection classes support concurrent access and iterations

without synchronization as long as the collection records
are not removed (e.g. FastMap look-up table).

◗ To keep read access unsynchronized when records are
deleted, applications may either:
• Replace the whole collection.
• Or (better) set the record value to null instead of removing it.

◗ A read-only view on any collections is also provided (
unmodifiable() method). This view is thread safe when the
collection is thread-safe (records not removed).

http://javolution.org/api/javolution/util/FastMap.html
http://javolution.org/api/javolution/util/FastCollection.html

Others.

◗ Support custom values comparator (collections) and
key/value comparator (maps). For example, a lexical
comparator can be used to retrieve objects based upon
their character sequence content (regardless of their actual
type).

◗ BSD-License allows applications to reuse/modify the
collection source code as long as the copyright header is
kept intact.

http://javolution.org/api/javolution/util/FastComparator.html

Conclusion
◗ Javolution collections behavior is highly time predictable

(in the micro-second range).

◗ By favoring an incremental approach and by allocating
small objects, the work and performance of concurrent /
incremental garbage collectors is significantly improved.

◗ Finally, these collections are fast, very fast (as shown in
the performance report in annex) proving that “real-time”
can sometimes be “real-fast”.

Biography
◗ Jean-Marie holds a master degree of electrical engineering

(Orsay University, France) and a post graduate degree in
Information Processing and Simulation.

◗ Jean-Marie has been with Raytheon in Marlborough for 7
years.

◗ He is the project owner and main author of two open-
source projects: Javolution (http://javolution.org) and
JScience (http://jscience.org).

◗ Jean-Marie work has been published in several magazines
such as Dr Dobbs Journal and the Java Developer Journal.

http://javolution.org/
http://jscience.org/

Annex: Performance Report
◗ Relative performance of Javolution Collections classes

versus Standard Collections classes.
◗ The platform is a Single-CPU Intel Pentium 4 3.20GHz

running Linux 2.4
◗ The benchmark source code and executable are available

from the Javolution home page.

• Add (new) - The collection is created (using the new keyword),
populated, then discarded (throw-away collections).

• Add (recycled) - The collection is cleared, populated, then reused
(static collections or throw-away collections in PoolContext).

List – Add Performance

List - Add

0

10

20

30

40

50

60

70

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastTable (new)
FastTable (recycled)
ArrayList (new)
ArrayList (recycled)
FastList (new)
FastList (recycled)
LinkedList (new)
LinkedList (recycled)

List – Iteration Performance

List - Iteration

0

5

10

15

20

25

30

35

40

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastTable - Iterator

FastTable - get(i++)

ArrayList - Iterator

ArrayList - get(i++)

FastList - Iterator

FastList -
getNextNode()
LinkedList - Iterator

Map - Put Performance

Map - put

0

50

100

150

200

250

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastMap (new)

FastMap (recycled)

HashMap (new)

HashMap (recycled)

LinkedHashMap (new)

LinkedHashMap
(recycled)

Map – Iteration Performance

Map - Iteration

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastMap - Iterator

FastMap -
getNextEntry()
HashMap - Iterator

LinkedHashMap -
Iterator

Map – Get Performance

Map - get

0

10

20

30

40

50

60

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastMap
HashMap
LinkedHashMap

Set – Add Performance

Set - Add

0

50

100

150

200

250

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastSet (new)

FastSet (recycled)

HashSet (new)

HashSet (recycled)

LinkedHashSet (new)

LinkedHashSet
(recycled)

Set – Iteration Performance

Set - Iteration

0

10

20

30

40

50

60

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastSet - Iterator

FastSet -
getNextRecord()
HashSet - Iterator

LinkedHashSet -
Iterator

Set – Contains Performance

Set - Contains

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4

Log10(Size)

N
an

o-
Se

co
nd

s

FastSet
HashSet
LinkedHashSet

